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Let V be any (sufficiently regular) attractive potential in one and two dimen- 
sions. We make rigorous an argument of M. Kac [1 ], relating the recurrence of 
the Brownian motion to the existence of at least one bound state for the quan- 
tum Hamiltonian H = -(A/2) + V. 
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1. I N T R O D U C T I O N  

There are (at least) three physical  propert ies  in spaces of low dimensions  (1 
or 2) which cease to hold in higher dimensions  (3 or  more) .  

First of all, a symmetr ic  r a n d o m  walk (or a Brownian  mot ion)  is 
recurrent in one and two dimensions  but  is t ransient  for d imension d>~ 3. 
That  is, if {x(t), t~>0; x ( 0 ) = x e E  ~} is the d-dimensional  Brownian  
mot ion  (BM), then 

d~<2 
d > 2  

I { t ) O : x ( t )  belongs to an open set S}[ = +o% for every S the 
same quant i ty  is finite for every bounded  S 

where I ' l  is the Lebesgue measure.  See, for example,  reference [1, p. 80] 
The same p roper ty  holds for a symmetr ic  r a n d o m  walk on 2d. 

The second p roper ty  is: for every at t ract ive potent ia l  V of a rb i t ra ry  
small depth and support ,  the corresponding q u a n t u m  Hami l ton i an  H has 
always at least one bound  state in d =  l or  2. In higher dimensions,  the 
discrete spect rum of H is emp ty  if the pa ramete r s  (depth and suppor t )  of V 
are small enough (Ref. 1, p. 114). 
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610 Ruelle 

Finally, there is no breakdown of a continuous symmetry in statistical 
mechanics (or in QFT)  if d =  1 or 2, (2/ while this breakdown occurs if 
d>~3). ~ 

The dimensional behavior of these three phenomena is too charac- 
teristic not to expect some relation between them. 

A connection between the recurrence of BM and the existence of a 
bound state for any attractive potential in d =  1, 2 was suggested by 
M. Kac (Ref. 1, p. 115). The main goal of this note is to complete Kac's 
argument into a proof of the existence of such a bound state. Our proof is 
not based on any explicit solution of the Schr6dinger equation, but only on 
recurrence properties of the BM. This is the content of Section 2. 

There are many links between statistical mechanics and random walks. 
In particular, the average number of visits to the origin of a symmetric d- 
dimensional random walk enters in the proof of the presence (d>~ 3) and of 
the absence ( d =  1, 2) of continuous symmetry breakdown. However, the 
relation between both phenomena does not seem to go much beyond this 
formal level. 

In Section 3, we interpret our proof as an entropy-energy argument 
and compare it to the analogous statistical-mechanical situation. 

2. EXISTENCE OF A B O U N D  STATE IN ONE A N D  
TWO D I M E N S I O N S  

2.1. Preliminaries 

We first give some definitions and some results which will be used 
later. 

Let {x,~(t), t>~0; x w ( 0 ) = x E  Nd} be the d-dimensional Brownian 
motion ( d -  BM) and Dx be the space of Nd-valued continuous xw(t), t >>, O, 
with xw(0)=x:  f2x= {w[xw(t): ~+ ~ Nd, xw(O)=x}. We define for a~  NJ, 
w s f2 x and t > 0 the Brownian local time v(t, a, w) as 

f2 z(t, a, w )=  6(Xlw(S)--al)... 3(Xaw(S)-aa)ds (2.1) 

in which 6( ' )  is the Dirac distribution and the upper index denotes the 
component. Each component of a d-BM is a 1-BM. 

r(t, a, w) measures the presence of the path w at a during time t. We 
also define the integral Brownian local time e(t, w) as 

e(t, w) = f~a r(t, x, w) e(dx) (2.2) 

for any nonnegative and finite measure e on Na. 
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For d =  2, we will be interested in a spherically symmetric potential, 
and so it will be useful to consider the radial component of the d-BM, 
namely the d-dimensional Bessel process {rw(t)= I2~(t)l, t>~0; 
rw(0) = le  N+ }. The analogues of (2.1) and (2.2) for a Bessel process read: 

;0 "c(t,m, w)= 6 [ r w ( s ) - m ]  ds (2.3) 

e(t, w) = f~ r(t, r, w) #(dr) (2.4) 
+ 

for any nonnegative and finite measure # on ~+. 
Let us also recall the Feynman-Kac formula, for a general continuous 

Markov process (S, t2~, Px; x e S) characterized by its state space S, its 
sample path space t2x, and the probability measures Px of the process 
starting at x. 

Let 0 be the generator of the process, k a positive and piecewise con- 
tinuous function, and f a bounded and continuous function. Then the 
Feynman-Kac formula states that (Ref. 6, p. 54) 

v(x) = Ex e-~tf[xw(t) ] e-S'o kEx,(s)le~ dt (2.5) 

is the bounded and continuous solution of 

[c~ + k(x) - O] v(x) = f ( x )  (2.6) 

Ex(') is expectation with respect to Px- 
In case of d-BM (S=  Nd, f2x=space defined above, Px=Wiener 

measure), the operator 0BM is A/2, and so the homogeneous solution of 
(2.6) is the eigenfunction with energy - e  of the Hamiltonian 
H = - A / 2  + k(x). 

Equations (2.5) and (2.6) provide an explicit form for the kernel of 
exp ( - tH)  with H = H o +  V (Ref. 1, p. 53) 

e-re(x,  y) = f~ e ~'o VEXw(S)l d, Db(x, 0; y, t) 
x 

(2.7) 

where Db(x, 0; y, t) is the unnormalized Wiener measure conditioned on 
the fact that motion starts at x and arrives after a time t at y. 

In the case of the d-dimensional Bessel process: S =  N+, 
QI = {w[rw(t): ~+ --* N+,rw(O)=/} and Pt=Bessel measure. (See 
[6, p. 59] for more information about Bessel processes.) 
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The generator of d-dimensional Bessel process is 0Be= 
1 2 ( d -  d~] radial of 0BM. ~[ d~ + 1 )/r ) = the part 

Consider a spherically symmetric potential V in d~> 2 and denote by 
H~ the radial part of H: H~ = -0BI, + V(r). The Feynman-Kac formula 
gives the analogue of (2.7) for the Bessel process. 

e m~(l, m) = fa, e-56 V[r~(s)]a~ Dr(l, 0; m, t) (2.8) 

in which Dr(l, 0; m, t) is the unnormalized Bessel measure conditionned on 
the fact that the motion starts at l and arrives at m after a time t. 
( t > 0 ; l e  ~+ ;  m~ ~+\{0}) .  

2.2. The One-Dimensiona l  Case 

We want to prove the existence of at least one bound state for any 
potential of the form V= Va + V2, with V~ in L2(N or ~2), V2 in L'(R or 
R2) and 172 goes to zero as Ix[ goes to infinity. Furthermore, V is negative 
and strictly negative on some open set. 

It is clearly enough to prove the result for a square-well potential 
V= -21{ 121 ~ L}, for any L and 2 strictly positive. We shall prove it using 
properties of BM and without solving the corresponding Schr6dinger 
equation. 

Let us recall some "poetry" of Kac (Ref. 1, p. 114). Let 
H =  -(A/2)  + V with the square-well defined just above. By (2.7) we have 

(f, e ttXg) = f~0 f*(0)  g[Xw(t)] e I'o v[x~(s)?as Db (2.9) 

where Db is the Wiener measure (the motion starts at zero). Choosing 
f ( x )  = g ( x ) =  1 ~ L ~176 (2.9) becomes, letting t ~ oo 

lim (f, e t /tg)= lim fa e;l(s:lew(*)l'<L;'~')l Db (2.10) 
t ~ o O  t ~ o o  0 

Recurrence property (see introduction) implies that for d =  1, 2, 
e x p 2 1 ( ' ) ] ~ o o  as t ~ o o ,  so as a map from L ~ to L ~, Ilexp(-tH)H 
diverges as t ~ oo no matter how small 2 is. But the existence of a negative 
bound state is equivalent to Ilexp(-tH)]l diverging as a map from L 2 tO 

L 2, and the former divergence does not imply the latter one. 
This section makes complete Kac's argument: by strengthening (2.10), 

we prove that []exp(--tH)ll actually diverges from L 2 to L 2. 
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Our proof is based on a sequence of inequalities which contradict the 
fact that H =  - (A/2)  - 21{121 ~< L} ~> 0, or equivalently, that exp( - tH) is 
bounded from L 2 to L 2. Once we know that H cannot be positive, we will 
know that there is some (negative energy) bound state, because, by Weyl's 
essential spectrum theorem, the essential spectrum of H and of H0 are the 
same. (7) 

For d =  1, It8 and MacKean (Ref. 6, p. 230) proved the following 
theorem concerning the asymptotic distribution of e(t, w) defined in (2.2) 

F e(t'w) <<.u]=~ffe &adt (2.11) ,limoo PY Le(R) ~7 

for u >i 0, y e ~, and e(R) = ~ e(dx), where e is the measure used to compute 
e(t, w) in (2.2). 

So we write 

O< /~f~e-'2/2 dt= lim P~Fe(t' W)~ue(~)l (2.12) 

and choosing e(dx) = I{ Ixf ~< L} dx, e(R) = 2L (e(t, w) then equals the time 
spent in I - L ,  L]  during a time t), (2.12) is equal to 

= lim Py F ~(t' w) ) 2uL] (2.13) 
L,/7 

= lim Py [e(t, w)>~2uLllxw(t) I ~at~].py[lxw(t)l <<at~ ] 
(2.14) 

+ lira Py Fe(t, w) >>- 2uL I Ixw(t)l ~> ate] "Py[Ixw(t){ >~ aP] 

For the one-dimensional Wiener measure, we have 

Py[xw(t ) ~ dx] = ~ e ~- y?/z, 

so that, if c~ > �89 and a > 0 

[ :2] 
py[iXw(t)l)at~]= 2 exp ( x -  ) ,~ ~- d x ~ O  t ~  oo (2.15) 

Therefore the second term of (2.14) vanishes in the limit t--* oo. One has 
also 

lim Py[JXw(t)l<~at~]=l - lim Py[IXw(l)l>>.at~J=l (2.16) 
t ~ o O  t ~ o O  
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Furthermore, since (2.12) is independent of y, we write (2.14) as 

~aaf dy lira f ( y )  g(z)Py - - - ~ Z u L I x ~ ( t ) e d z  (2.17) 

in which we set f(y)=I{hyL <~a}, g(z)=I{[zl ~at ~} and a>O. 

l f ~  fo~ fA (2.17) =~aa dy lim dz f (y)  g(z) Db(y, O; z, t) (2.18) 
- - o o  t ~ oo oQ 

with A = {WeQy: e(t, w)>~ 2uL .~/7} = ~ y .  For w cA, we have the follow- 
ing inequality 

so that 

(2.18).< 1 
"~2a f_ 

X C 2 u 2 L x f ~ f A  

1 ~ e --2u,~.L ./7 e ~'o VL~w~)j J~ 

f 
oQ 

dy lim dz f (y )  g(z) 
t ~ o~ oc 

e I'o v[~(~)j a, Db(y, O; z, t) 

l f~o~ fo~ ~-~a _ dy l i m  -o~ dz f ( y )  g(z) 

xe-2~c' /T fo e I~~ Db(y, O; z, t) 

2a ~ dy ~-~lim e -2~;'L'/7 oo~ dzf(y)  g(z) e re(y, z) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

Now suppose H>~0. Then exp(- tH)(y ,  z) is bounded for t > 0  and since 
f (y)  exp(- tH)(y ,  z) is integrable for every t >0 ,  we can interchange the 
integral on y and the limit on t. 

1 2,~,L trig) (2.23) (2.18) = ~ a  tlimo~ e ,/7(f, e 

Since H~> 0, the norm of e x p ( - t H )  as an operator on L: is not greater 
than 1 and consequently 

1 lira a e_2.~L./;llflh.llgll (2.24) (2"lS) ~<~a 

= l i m e  2u~L'/Tt~/2 (2.25) 
I ~ C Q  

= 0 for every u, 2, L strictly positive (e > �89 
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This yields the announced contradiction: we proved that 
H = H 0 - 2I{ ix] ~ L } possesses a bound state, for every 2 > 0 and L > 0. 

2.3.  T h e  T w o - D i m e n s i o n a l  Case  

The potential we consider is again V(2 )=-2 I{ [21<~L} .  V is 
spherically symmetric, so we use the two-dimensional Bessel process. In 
that case, It6 and Mac Kean (Ref. 6, p. 231) proved that 

lim P , [ ~ <  utt(~+ )] = 1 - e  " (2.26) 
f ~ o o  

for u, l~>0 and i t ( N + ) = ~ +  it(dr) (see 2.4). 
The following proof mimics the 

#(dr)= l{r d L } dr. 
preceding one. We choose 

re(t, w) , ] 
O < e - " =  lim j 

[e(t, w) ] 
= ,li~moo P' L ~  ~> uLlrw(t )  ~ 2t ~ "P, Erw(t) 

(2.27) 

~< 2t ~ ] 

+ tli+mo ~ Fe(t, w) ~>2t ~] ~>2t ~] (2.28) P , [ ~ u Z l r w ( t )  "Pz[rw(t) 

The transition probability of a d-Bessel process reads (Ref. 6, p. 59) 

P t [ r w ( t ) e d m ] = - - - ~ ( m l )  1 (d/2)e-(12+m2)/2tI(d/2)_l dm (2.29) 

which reduces in d = 2 to 

Pt[rw( t) e dm] = (m/t) e -  ~t2 + mbmlo(lm/t) dm (2.30) 

where In is a modified Bessel function of the first kind. 
Due to Markov properties of the Bessel process 

lim Pt[rw(t) >>- 2t ~] 
t ~ o o  

does not depend on the starting point / .  Hence if c~ > �89 

lira Po[rw(t ) >>. 2t ~] = lim -1 me m2/2, dm = 0 
t -~+ o o  t ~ o O  t t ~ 
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Therefore 

0 < e - " =  lira Pt >~uLlrw(t).~2t (2.31) 
l ~ o o  

2 ;o 1 dl lim dm f ( l )  g(m) Dr(l, 0; m, t) (2.32) 
a t ~  

where f ( l )=I{ l<~a} ,  g(m)=I{m<<.2t~}, a > 0  and B =  {w~(2,: e(t, w)>~ 
uL ln  t} c ( 2  l 

(2"32) ~la f,~dl~limo~o ~ fo ~ d m f ( l )  g(m) 

• e - -u2Lln t  ~ e-I '  o V~r..(s)~ ds Dr(I, 0; m, t) (2.33) 
l 

;o = -  dl m dmf ( l )  g(m)t-u;~Ce-mr(l, m) (2.34) 
0 

with Hr = 1 2 V(r). ~[d r + (I/r)  dr] + 
Suppose that H>~ 0 and therefore that H r >/O. 

(2.34) =-1 lim t -u;'L IIfHLe(~+.rdr) " Ngllt2(~+,rdr) (2.35) 
a t ~ o e  

= lira t ~-~;'c (2.36) 
l ~ O ~  

1 
= 0  if u 2 L > ~ > -  

2 

The condition u2L> ct is not a restriction, because we can satisfy it by 
choosing the value of u. Therefore, the same conclusion as the one-dimen- 
sional case holds: H =  H 0 -  21{1s ~<L} has at least one bound state, for 
any 2, L > 0 .  

3. S O M E  R E M A R K S  A B O U T  ONE-  A N D  T W O - D I M E N S I O N A L  
B R O W N I A N  LOCAL T I M E  

In this section, we make some remarks concerning a one- and two- 
dimensional square-well potential and related Brownian quantities. As a 
consequence of the Feynman-Kac  formula (2.5), we can express the lowest 
eigenvalue of H =  - (A/2)  + V as 

inf (spec H) = - lira 1 in Ex(e ~'o v[x~.(s)] Js) (3.1) 
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Letting H =  -(A/2)  - 21{ {21 ~< L}, 

inf (spec H) -- - lira _1 in E~(e ;~'' '~'~) 
t ~  t 

(3.2) 

where e(t, w) is really the time fraction spent in the support S of the poten- 
tial V. Therefore, the ground state energy gives the asymptotic behavior of 
the generating function of e(t), and inversely. 

We see also that a necessary and sufficient condition to get a bound 
state is the exponential divergence of the generating function Ex(eX~('l). This 
divergence results from two conflicting effects: the paths that spend a long 
time in S and thus make exp[2e(t)] large tend to have a small probability 
with respect to the Brownian measure. Indeed we know that the average of 
e(t) is proportional to x/?) - (d= l) or In t (d=  2) (see below). The existence 
of the bound state is due to paths that spend a much longer time in S than 
these averages, namely a time ~ct.  

These contribute to the "partition function" Ex(exp{-~ V[xw(s)] ds}) 
a factor exp(2 ct). The question is then: What is the probability of these 
paths according to the Brownian measure? If it were as small as exp ( - c ' t )  
(which happens when the motion is transient, i.e., in d >  2), then this would 
control the divergence of exp(2ct) for 2 small, and so we would not have a 
bound state. One way to prove the presence of a bound state would 
therefore be to show directly that the weight of the paths that spend in S a 
time proportional to t is not too small, i.e., is larger than e x p [ - f ( t ) ]  with 
f ( t) / t  --, 0 as t ~ oe. 

We have not quite followed this idea: rather, we used estimates on 
deviations around the ~ or In t average behavior and this turned out to 
be sufficient to prove the exponential divergence of Ex(e;~'(')). This implied 
that H is not positive and, using Weyl's theorem, that H possesses a bound 
state. 

Our argument can be regarded as an entropy-energy argument: we 
show, for a well-chosen set of paths, that the divergence of the potential 
term wins over the damping coming from the kinetic term (the Brownian 
measure). One might naively identify the potential with an energy term and 
the Brownian measure as an entropy term (since it is a measure on paths, 
i.e., on configurations). However, in statistical mechanics, we know that the 
entropy dominates the energy in low dimensions and what we just said 
sounds like the opposite. 

Recall first that the Brownian measure (free measure in quantum 
mechanics) can be expressed as an integration over all paths of 
exp(S~ (22/2)(s)ds) [4]. If we discretize the functional integral in (3.1), we 
see that the Brownian measure becomes exP[ �89  2] and 

822/43/3-4-15 



618 Ruelle 

therefore couples the variables xis for different is (interaction with the 
nearest neighbors). Hence the Brownian measure corresponds to the energy 
from a statistical viewpoint. The potential term becomes the "single-spin" 
distribution e x p [ - Z i  V(xi)] and is analogous to an entropy term. 

Another analogy between the quantum and statistical mechanical 
situation is the following one. Let the coupling constant correspond to tem- 
perature T. For  2 (resp., T) large, we have a bound state (resp., a dis- 
ordered phase). The relation between high-temperature expansions and 
perturbation theory in quantum mechanics was stressed by Faris. (3/ 

For  2 small and d >  2 (resp., T small) we have a continuous spectrum 
for H (resp., an ordered phase), while a bound state persists for all 2 > 0 if 
d~< 2 (resp., a disordered phase for statistical systems with a continuous 
internal symmetry). 

It is a standard exercise to solve the Schr6dinger equation for 
H =  - (A/2)  - 21{ [21 ~< L}. 

The energy levels are determined by the solutions of transcendental 
equations (]E[ is the absolute value of the energy E) 

d =  1 IE] = 2 sin2(aL) 
(3.3) 

d =  2 aJ~(~L ) Ko(flL ) = flJo(c~L ) K~(flL ) 

in which a = , , , /2(2-  IEI ), fi = x/2 IE[, Ji, and K i are Bessel functions. For 
small 2 and L, we can perturbatively solve these equations. The first one 
yields, for the ground state energy 

Eo _ 2 2 2 L 2 + ~  3 4 736 = 2 L - - ~ - 2 4 L 6 +  ""  (3.4) 

(By implicit functions theorem, 3.4 is the unique solution 
neighborhood of 2 = L = 0.) 

The second implicit equation gives, at first order in 2, L 

in the 

2 ( 2 )  
Eo--~ --~-gexp 22L2 27 (3.5) 

in which 7 = 0.57721... is the Euler constant. 
We remark that the ground-state energy is much closer to zero in 

d =  2 than in d = 1, since if, e.g., )t = L = 0.01, one finds that 

d =  1 E o ~  --2.10 s atomic units 

d =  2 Eo ~ --2,10 -868586 atomic units!! 
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The energy values (3.4) and (3.5) lead to the generating functions 

1 1 d = l  E(e~~('))=e 222L21 for t ,~,~>> 1 

[ 2 l ( 2  ) 1  d= 2 E(e ~(t)) = exp - ~5 exp 32L 2 2y 

1 1 
for t ,~,Z~> 1 (3.6) 

From (3.6), we can compute the asymptotic distribution of the time spent 
in I - L ,  L],  for d =  1 only 

d = l  P [ e ( t ) c d s ] = ~ e x p - - 8 L ~ t  s,t,~,--s (3.7) 

By (2.5) and (2.6), we can compute the first moments of e(t). We take 
~1 2 for d = l , f ( x ) = l , k ( x ) = 2 I { l x l < ~ L }  and 0 ~dx, and for d=2, f (r)=l ,  

k(r)=2{r~<L} a n d 0 - J  2 - ~(d~ + (1/r)  d,,). 
It is difficult to obtain explicit formulas for these moments which are 

infinite series, but we can compute the main terms, as t >> 1. These are 

(2n)! t/2) d =  1 Eo[e2"(t)] = - - - ~ ( 2 t L 2 ) " + O ( t  € 

nT (3.8) 
Eo[~ 2"+ ~(t)] = - ~  (8L21) n + ~j2 + o(t") 

N/7'C 
L 2 t 

d = 2  Eo[e(t)] = ~- ln-~ + O(1 ) 

f 
E o [ e 2 ( t ) ]  =- 2L4 In2 ~-5 + O(ln t) (3.9) 

183 t 
Eo[g3(t)] = - ~ -  L4t In ~5 q- O(t) 

We observe that the asymptotic generating function (3.6) in d =  1 yields the 
correct asymptotic moments of e(t) (of even order only, since 3.6 is even in 
2) when expanded in powers of 2, despite a nonobvious exchange of ?imits 
(in t and in 2). In d =  2 however, the asymptotic generating function does 
not allow us to say anything about asymptotic moments. 
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